# STAR detector upgrades in relation to RHIC SPIN program

Bernd Surrow MIT



#### Main Assumptions:

- The RHIC Spin Collaboration will write a report which:
  - Describes the full spin program,
  - provides context of beam and physics achievements and
  - lists needs for future detection capabilites and instrumentation..
- The 5 and 10 week scenario's will enter the document:
  - Near the end to indicate their impact,
  - i.e. not at as early constraints on the spin program!

#### STAR detector upgrade program

- Requirements on the STAR detector upgrade
  - Particle identification (-1< $|\eta|$ <1): Full acceptance TOF barrel system to extend particle identification capabilities
  - High rate TPC front-end electronics (FEE) readout and DAQ upgrade: Allow for maximal utilization of high luminosity RHIC operation (AuAu/pp)
  - Inner tracker (-1< $|\eta|$ <1): Enhanced inner, high-rate tracking capabilities for heavy quark identification (charm/beauty) at mid-rapidity based on a precision microvertex detecter
  - Endcap tracker ( $1<|\eta|<2$ ): Improved forward, high-rate tracking capability to enable reliable charge sign discrimination for W boson decays
  - Forward calorimetry upgrade (2<η<4): Enhanced capabilites to measure forward produced mesons

### STAR upgrade program

#### Overview

**RSC** meeting



#### Forward Meson Spectrometer



Conceptual Design

FMS is a 2m×2m EM calorimeter built from existing lead-glass cells to replace the FPD west of STAR

#### Solenoid Magnet Barrel Electromagnetic Calorimeter (EMC) Projection Chamber 100 cm Beam Beam Courters Vertex Endcap magnet **EMC** poletip 5/21

#### **Physics Motivations:**

- probe gluon saturation in p(d)+A collisions via...
  - > large rapidity particle production  $(\pi^0, \eta, \omega, \eta', \gamma, K^0, ...)$  detected through all  $\gamma$  decays.
  - > forward di-jet surrogates  $(\pi^0-\pi^0)$  probes gluons with smallest Bjorken-x in Au nucleus
  - di-jets with large rapidity interval (Mueller-Navelet jets)
- disentangling dynamical origins of large x<sub>F</sub> analyzing power in p<sub>↑</sub>+p collisions.
- longitudinal spin asymmetries for  $\pi^0 \pi^0$  and  $\gamma \pi^0$  rapidity correlations

#### Forward Meson Spectrometer

Cost and Timetable



- built from existing lead glass cells from IHEP,
   Protvino and FNAL
- \$0.8M proposal by Penn State University to FY05 NSF-MRI solicitation for high voltage, readout electronics and mechanical realization in January, 2005.
- planned implementation in STAR by October, 2006



6/21 Bernd Surrow

### STAR tracking upgrade: Physics, status and timeline

#### Physics, status and timeline

- The study of heavy flavors and W production: Upgrade of the STAR inner/forward tracking system
- Simulation work and design of detector layout based on silicon and triple-GEM technology (On-going R&D and prototyping effort) started
- Integrated tracking design of a new inner and forward STAR tracking system mandatory
- Staging of tracking upgrade in accordance with readiness of detector technology and beam development:
- Possible scenario:
  - Stage 1: Installation of STAR Micro-Vertex Detector together with a minimal new barrel tracking detector based on silicon technology (-1 <  $\eta$  < 1) (Heavy Flavor Physics)
    - Proposal APS Heavy Flavor Tracker early CY05
    - Proposal Barrel after FY05 run
    - Installation of new inner tracking system by summer 2008 (FY09 run)
  - Stage 2: Upgrade of the forward tracking system (1  $\langle \eta \rangle$  (W physics)
    - Proposal after FY06 run
    - Installation of forward system by summer 2009 (FY10 run)
- Dedicated time for machine development with polarized protons to achieve high luminosity and high polarization is vital for the success of this novel program!

in STAR
decadal pla
and
AGS/RHIC
PAC

## STAR tracking upgrade: Conceptual layout



## Comments on STAR tracking upgrade

- STAR tracking upgrade in RHIC SPIN document:
  - □ Not yet a full DOE proposal!
  - □ Plans and work in progress!
- Relation to other DOE proposals:
  - □ ToF
  - □ APS Heavy Flavor Tracker
  - □ DAQ upgrade
- Communication to DOE Nuclear Physics:
- Funding profile and sources:

### STAR tracking upgrade - Heavy flavor production

#### ■ STAR RHIC-SPIN program

- Comprehensive study of the spin structure and dynamics of the proton, in particular the nature of the proton sea, using polarized protons: "RHIC SPIN Baseline program" (DOE review, June 2004)
  - > Gluon contribution to the proton spin using various probes involving:
    - Final-state jets such as inclusive jet production and di-jet production (Short-term)
    - Inclusive  $\pi^0$  production (Short-term)
    - Prompt photon production (Long-term)
    - Heavy-Flavor production (Long-term)
  - > Flavor decomposition of quark and anti-quark polarization in W production (Long-term)

M. Karliner and R.W. Robinett,

#### Heavy flavor production

- Unique test of partonic a<sub>LL</sub>
- Sensitive to gluon helicity with low background from quark helicities
- NLO formalism available (Bojak and Stratmann)









### STAR tracking upgrade - W production

#### ■ Flavor decomposition of quark and anti-quark polarization

• Semi-inclusive DIS - sensitivity reduced by fragmentation functions and  $e^2_q$ 

weighting

B. Dressler, Eur. Phys. J. C14 (2000) 147.



 W<sup>±</sup> production in pp collisions forms the best means to probe the flavor structure of the proton sea



$$\Delta d + \overline{u} \rightarrow W^{-}$$

$$\Delta \overline{u} + d \rightarrow W^{-}$$

$$\Delta \overline{d} + u \rightarrow W^{+}$$

$$\Delta u + \overline{d} \rightarrow W^{+}$$

 Parity violating single-spin asymmetries at RHIC provide access to the quark flavor structure of the proton spin:



GRSV2000 + GRV98 (LO

0.6

-0.2 -0.4

-0.6

 $\Delta \overline{u}$ 

 $\Lambda \overline{u} = \Lambda d$ 

$$A_L^{PV(W^+)}(\vec{p}p) \to \Delta u/u$$

$$A_L^{PV(W^+)}(p\vec{p}) \to \Delta \vec{d}/\vec{d}$$



$$A_L^{PV} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

$$A_L^{PV(W^-)}(\vec{p}p) \to \Delta d/a$$

$$A_L^{PV(W^-)}(p\vec{p}) \to \Delta u/a$$

### STAR tracking upgrade - Forward tracking

- Simulated forward  $p_T$  resolution (1 <  $\eta$  < 2)
- Forward  $p_T$  reconstruction:  $\pi^-$

■ True  $p_T$  = 30 GeV

■ Range in  $\eta$ : 1 <  $\eta$  < 2



N. Smirnov (Yale)

- Simulated fast tracking configuration:
  - Inner (fast) configuration: 3 silicon layers
  - Outer (fast) configuration: 2 triple GEM layers

• Reconstructed  $p_T$  for various detector configurations:



#### STAR tracking upgrade

Integrated tracking approach of pixel upgrade and inner silicon upgrade in combination with forward GEM tracker!

#### STAR tracking upgrade - Organization matters

#### ■ Goal of STAR tracking upgrade working group:

- Work out the case for a proposal towards an upgrade of the STAR inner (-1 $\eta$ <1) and forward (1 $\eta$ <2) tracking system which is required for the study of heavy flavor (AuAu/pp) and W production (pp)
  - W physics case: Flavor decomposition of quark/anti-quark polarization
  - Heavy flavor spin case (Strong dependence of partonic asymmetry on heavy quark mass- study of heavy flavor tagged jets): STAR Heavy flavor program driven by STAR's relativistic heavy-ion program
  - Integrated tracking design of a new inner and forward STAR tracking system is mandatory
  - Staging of tracking upgrade in accordance with readiness of detector technology and beam development
- Set-up of simulation tools, physics simulation studies and R&D work on triple-GEM technology has been started
- Participation so far from: ANL, BNL, IUCF, LBL, MIT, Yale, Zagreb,...
  - Graduate students/Postdocs: 3
  - Staff physicists/faculty: 15
  - Engineers/technicians: 2
- Convenors: Ernst Sichtermann (LBL) and B.S. (MIT)
- □ Steering committee: G. v. Nieuwenhuizen (MIT), N. Smirnov (Yale), S. Vigdor (IUCF), H. Wieman (LBL)

13/21

#### STAR tracking upgrade - Heavy flavor case

- Remarks on the physics case (1)
  - AuAu heavy-flavor physics drives the STAR inner tracking upgrade
    - Pixel detector proposal which requires a new pointing device (STAR SVT review)
    - Potential heavy flavor spin physics case (gluon polarization) in polarized pp collisions
    - Requirements:
      - Secondary vertex reconstruction capabilities for central region (-1 <  $\eta$  < 1) in combination with the APS Heavy Flavor Tracker
      - Intrinsically fast detector / readout system
      - To be defined: Number of silicon barrel layers at what radius? Resolution? Readout speed? Occupancy?

### STAR tracking upgrade - W physics case

- Remarks on the physics case (2)
  - Study of flavor decomposition drives an upgrade of the STAR forward tracking system
    - Endcap calorimeter in combination with a new proposal towards a forward tracking system
    - Complication in STAR with TPC: Tracking/Charge discrimination for high energy leptons break down
      in the forward direction
    - Welcome ideas for use in Heavy Ion running,
    - Requirements:
      - e<sup>-</sup>/e<sup>+</sup> charge sign discrimination in forward direction (1 <  $\eta$  < 2) (Sagitta ~2.5mm for high p<sub>T</sub> ~30GeV tracks)
      - Intrinsically fast detector / readout system
      - To be defined: Number of silicon disks and location? Resolution? Impact of dead material in front of EEMC
  - □ For both upgrades: Integrated mechanical design: Integrated Tracking Upgrade

### STAR tracking upgrade - Design

Start from the beginning with an integrated tracking design approach which is based on:

#### General considerations

| <u> </u> | Integrated mechanical design for the APS Heavy Flavor Tracker, barrel layers and forward disks Design which is reflected by many silicon based inner tracking systems at collider detectors such as: CDF/DO (Tevatron), ZEUS/H1 (HERA) and ATLAS/CMS (LHC) |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | First setup: APS Heavy Flavor Tracker and minimal barrel system                                                                                                                                                                                            |
|          | Flexibility to upgrade inner-forward system and inner-barrel system at a later stage                                                                                                                                                                       |
|          | Assumption: TPC stays as such, FTPC is phased out and DAQ/FEE upgrade is completed                                                                                                                                                                         |
| • Rely   | as much as possible on existing well established technology:  Detector technology (Conservative choice: Conventional silicon strip and triple-GEM technology)  Readout systems (APV25-51)                                                                  |

 Report towards a full proposal to document the conceptual layout of an integrated tracker for STAR under preparation:

| Physics | motivation |
|---------|------------|
|---------|------------|

- Conceptual layout and technical realization
- ☐ Timeline and Manpower
- ☐ Infrastructure
- ☐ Cost estimate

• Profit from potential resources at existing STAR institutions in terms of man-power and infra-structure

16/21

### STAR tracking upgrade: Simulation status

#### Overall status of simulation

- Fast simulation
  - ✓ PYTHIA input
  - ✓ Poor man's "geant"
  - Study detector number, placement, resolution, etc.
- Develop basic track reconstruction tools:
  - √ "standard" helix fit
  - First application of standard helix fit to W decay electrons
  - Full simulations (W+background)
  - Heavy flavor

- Import design in GSTAR, ITTF:
  - ✓ Full GEANT3 model (barrel/forward disks)
  - ✓ Strip simulator
  - Detector geometry in ITTF (New STAR track reconstruction)
  - ✓ ITTF tracking in barrel region (Au-Au simulations)
  - □ GEM tracker in GSTAR
  - ☐ Forward ITTF tracking



## STAR tracking upgrade: Simulation status

Fast simulator setup (Y-Z view)



RSC meeting BNL, 12/17/2004 18/21

### STAR tracking upgrade: R&D status

- Status of triple GEM R&D effort
  - Design of at least three triple-GEM chambers to be installed and tested at STAR under beam conditions:
    - Profit from experience by COMPASS with triple-GEM technology (fast, precise)
    - Establish collaboration to a US company to develop and manufacture GEM foils
    - Manufacture 2D-readout structures
    - Design of readout system using existing chip: APV25-S1
  - R&D team:
    - Collaboration between STAR/PHENIX: ANL, BNL, MIT, Yale
  - □ Tech-Etch Inc. (Plymouth, MA):
    - TechEtch is capable of producing GEM foils
    - First results are encouraging in terms of overall gain values achieved
    - SBIR proposal to DOE from TechEtch in collaboration with R&D team: Submitted December 10, 2004







APV25-S1 chip

#### STAR tracking upgrade: R&D status

#### Triple-GEM prototype chamber





- □ Hybrid: Available
- DAQ system: Under preparation
- Chamber mechanics: Under preparation





### Cost estimate for STAR Barrel and Endcap Trackers

Preliminary cost breakdown (Stage 1: barrel / Stage 2: endcap tracker)

| Item                | Design A |      | Design B |       | Remarks                           |
|---------------------|----------|------|----------|-------|-----------------------------------|
|                     | Amount   | K\$  | Amount   | k\$   |                                   |
| Sensors             | 894      | 894  | 1392     | 1.892 | ₹1000/sensor                      |
| Sensor R&D          |          | 100  |          | 100   | ₹50k times 2 types                |
| Hybrids             | 260      | 130  | 464      | 232   | \$500/berills substrate thin film |
| Hybrid R&D          |          | 50   |          | 50    |                                   |
| APV25 chips         | 4470     | 120  | 6960     | 174   | \$25/chtp                         |
| Cables              | 260      | 130  | 464      | 232   | \$500/low mass cable              |
| Cable R&D           |          | 50   |          | 50    |                                   |
| FEE                 | 57 21 60 | 600  | 890880   | 900   | \$1/channel, in house R&D         |
| Integration FEE/DAQ |          | 100  |          | 100   |                                   |
| Power Supply        |          | 100  |          | 100   | Power and bias supplies           |
| Cooling             |          | 200  |          | 200   | Under-pressure water cooling      |
| Mechanics           |          | 1000 |          | 1000  | Low mass, in house R&D            |
| Misc. items         |          | 100  |          | 100   |                                   |
| Total               |          | 3574 |          | 4630  | No contingency and overhead       |

| Item                | Disk design |      | Remarks                            |
|---------------------|-------------|------|------------------------------------|
|                     | Amount      | 1:8  |                                    |
| Sensors             | 675         | 675  | \$1000/sensor                      |
| Sensor R&D          |             | 100  | \$50k times 2 types                |
| Hybrids             | 196         | 98   | \$500/berillia substrate thin file |
| Hybrid R&D          |             | 25   |                                    |
| APV25 chtps         | 3370        | 85   | \$25/chip                          |
| Cables              | 260         | 130  | \$500/low mass cable               |
| Cable R&D           |             | 25   |                                    |
| FEE                 | 431360      | 450  | \$1/channel, in house R&D          |
| Integration FEE/DAQ |             | 100  |                                    |
| Power Supply        |             | 100  | Power and bias supplies            |
| Cooling             |             | 100  | Under-pressure water cooling       |
| Mechanics           |             | 300  | Low mass, in house R&D             |
| M'sc. items         |             | 100  |                                    |
| Total               |             | 2288 | No contingency and overhead        |

| Item                  | Disk design |      | Remarks                            |
|-----------------------|-------------|------|------------------------------------|
|                       | Amount      | k\$  |                                    |
| GEM chamber mechanics | 200         | 100  | \$500/chamber                      |
| GEM foils             | 900         | 180  | \$200/CEM foil                     |
| Hybrids               | 728         | 364  | \$500/berillia substrate thin film |
| Hybrid R&D            |             | 25   |                                    |
| APV25 chips           | 1456        | 40   | \$25/chtp                          |
| Cables                | 260         | 130  | \$500/low mass cable               |
| Cable R&D             |             | 25   |                                    |
| FEE                   | 186968      | 190  | \$1/channel, in house R&D          |
| Integration FEE/DAQ   |             | 100  |                                    |
| Power Supply          |             | 100  | Power and bias supplies            |
| Cooling               |             | 30   | Air flow system                    |
| Mechanics             |             | 300  | Low mass, in house R&D             |
| Misc. items           |             | 100  |                                    |
| Total                 |             | 1684 | No contingency and overhead        |